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Two-dimensional point sets derived from pairs of quasirandom numbers

generated by the bit-reversal method introduced by van der Corput exhibit

features well known from the quasiperiodic binary substitution tilings derived

from the rhombic tilings of Penrose and Ammann–Beenker. The concept of

geometric discrepancy, a measure describing the uniformity of distribution of

quasirandom sequences or point sets, is discussed from the perspective of

structural chemistry.

1. Certain shades of randomness

One tends to assume that point sets generated from random

numbers do not exhibit particularly pronounced spatial

patterns. However, as John von Neumann (1951) put it: Any

one who considers arithmetical methods of producing random

digits is, of course, in a state of sin. For, as has been pointed out

several times, there is no such thing as a random number. As a

consequence, patterns emerge, where no one possibly would

expect them.

This was shown, for instance, by Marsaglia (1968) regarding

the sublattice structure of pseudorandom numbers generated

by multiplicative congruential generators (MCGs), i.e. recur-

rence relations of the form Znþ1 � �Zn ðmod MÞ with integer

multiplier � and modulus M, 0 < � < M and Zi 2 Z=MZ =

f0; . . . ;M � 1g. In comparison with Fig. 1(a), showing a

perfectly ordered 8� 8 square lattice, Fig. 1(b) depicts the

special (indeed, worst) case for a choice of multiplier and

modulus as � = 47 and M = 65, respectively, yielding a similar

sublattice of index 65 and exceptional high, i.e. square

symmetry.

Although the pattern thus generated appears not random at

all, i.e. it is just another square lattice inclined to the one

depicted in Fig. 1(a), the distribution of points is still uniform.

Successive numbers generated by the multiplicative

congruential method appear as sufficiently random, at least in

many applications, unless they are plotted in a way similar to

the one shown in Fig. 1(b), where pairs of successive numbers

divided by the modulus define the coordinates of a point in the

plane.

Fig. 1(d), in contrast, depicts a truly random distribution of

64 points. Strictly speaking, ‘random’ here means pseudo-

random, too, since the algorithm implemented in the postcript

code generating the figure employs a pseudorandom number

generator as well. However, in this case the generator is a

more well behaving one, owing to special choices of its

multiplier and its modulus. A common choice of parameters,

describing the Park–Miller minimal standard MCG, may be

given as � = 75 and M = 231 � 1. In this case the Mersenne

prime M31 is chosen as the modulus M, with the multiplier �
one of its primitive roots. This choice guarantees a most

uniform distribution of lattice nodes regarding the inevitable

sublattice structure of the MCG, therefore justifying their

designation as pseudorandom. Moreover, the mere size of the

modulus compared with the subset of 64 generated points

conceals any visible hint to a particular sublattice structure.

The crystallographic implications of MCGs and their

sublattice structure with respect to the coordinate description

of crystal structures were explored by Hornfeck & Harbrecht

(2009) and Hornfeck (2012).

Yet another quasirandom set of 64 points is shown in

Fig. 1(c), which seems to share some of the regularity of a

lattice arrangement as well as the irregularity of a random

distribution. It is this point set via its corresponding planar

tiling which exhibits remarkable features within a crystal-

lographic context:

Figure 1
Two-dimensional point sets exhibiting distinct grades of randomness in
their spatial distribution: (a) lattice ordered, (b) pseudorandom with
pronounced sublattice structure, (c) quasirandom, (d) ‘truly’ random (i.e.
pseudorandom with a sublattice structure beyond recognition).

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5020&bbid=BB37
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767313005412&domain=pdf&date_stamp=2013-04-17


(i) The occurrence of pseudo-decagonal short-range order

evoked by an unconventional combination of near-miss thin

and thick rhombic Penrose tiles into a finite patch with a

diamond tile at its centre and a slightly distorted decagonal

convex hull.

(ii) The hierarchical arrangement of these pseudo-deca-

gonal clusters into a fourfold, almost square, pattern, mediated

by interwoven bands of near-miss thin and thick rhombic

Ammann–Beenker tiles.

(iii) With the whole pattern generated by a most simple and

general rule, namely a bit-reversal process, expressing a self-

avoidance principle at its roots, thereby defining an infinite

family of planar tilings.

Although the limiting cases of Figs. 1(a) and (d) seem well

defined, one should be aware that, since the advent of quasi-

crystals, a consistent concept of long-range order is missing.

Accordingly, quite distinct notions of randomness exist.

Notably a truly random distribution of points shows a

pronounced clustering of points accompanied by the corre-

sponding less densely occupied regions (voids). Often

regarded as counter-intuitive, this is the logical outcome of the

conditions that the placement of each point is independent of

the placement of the ones before and that each position shares

an equal probability to be occupied by a point. Truly random

numbers are distinguished by sharing the properties of being

unpredictable, uncorrelated and unbiased (Hayes, 2011). For

instance, a single throw of a fair dice yields any of the possible

outcomes from one to six with an equal probability of 1/6, each

throw is independent from those before, and in the limit of a

large number of repeats the frequency of occurrence of each

event will be uniformly distributed yielding the expectation

value of ð1þ 2þ 3þ 4þ 5þ 6Þ=6 = 3.5.

Attenuating the conditions on predictability, independence

and equidistribution yields numbers that still appear as

random, with respect to certain statistical tests in favour, but

nevertheless are truly deterministic. The conceptual difference

between pseudo- and quasi-random numbers relative to one

another and with respect to genuine random numbers origi-

nates from the exact way and extent to which the conditions

for randomness are diminished and bearing in mind the kind

of application for which the random numbers should be used

for. For instance, any inhomogeneity regarding the distribu-

tion of points appears especially disadvantageous in certain

applications of random numbers, such as Monte Carlo

methods which rely on the randomized but effective sampling

of some possibly high-dimensional parameter space [see

Hammersley & Handscomb (1975) for a general overview and

Hayes (2011) for a discussion of practical examples]. Thus, the

uniform distribution of the randomly generated sampling

points is a property of paramount importance [for a survey on

the uniform distribution of sequences see Kuipers & Nieder-

reiter (1974)]. Random numbers fulfilling this criterion are

denoted as quasirandom, to distinguish them from their

pseudorandom relatives.

Similar sampling problems are found in crystallography, e.g.

concerning probabilistic approaches to the solution of the

phase problem in structure determination. An extended

discussion on this topic may be found in the Appendix B to

this article.

Since the literature on random number generation is

extensive we restrict ourselves to reference the monographs of

Niederreiter (1992) and Hellekalek & Larcher (1998), both of

which focus on pseudo- and quasirandom numbers, low-

discrepancy sequences and point sets, their construction and

application for Diophantine approximation, numerical inte-

gration and Monte Carlo methods in general.

2. Patterns in the quasirandom realm

In the following, we aim to give an exposition of a special case

and its relation to an infinite family of planar tilings (x2). On

this occasion, we summon some well established concepts

from the field of discrete mathematics which may be of some

use for the structural chemist or crystallographer (x3).

2.1. Pseudo-decagonal short-range order from bit reversal

Visual inspection of the pattern constructed from a set of

quasirandom points and depicted in Fig. 1(c) exhibits features

characteristic of quasicrystals, in particular point configura-

tions of pseudo-decagonal local symmetry. A single pseudo-

decagonal cluster is highlighted in Fig. 2(a), where the points

are now identified with the vertices of a planar tiling solely

consisting of quadrilaterals, i.e. slightly varying thin and thick

rhomb(oid)s. Four adjacent quadrilaterals always share a

common vertex (except for borderline tiles). Another three

decagonal clusters are situated in the remaining quadrants.

The point set under consideration is only one example out

of a larger class of sets, known as Hammersley sets, which are

based on and generalize ideas introduced by van der Corput

(1935) regarding the construction of certain number

sequences (low-discrepancy sequences) now bearing his

name. The associated planar tilings therefore may also be
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Figure 2
Hammersley point sets of size M = 64 and M = 256 with an underlying
near-miss binary rhombic tiling and pseudo-decagonal clusters in an
almost square arrangement (a), local distortions in between decagonal
subsets (b), and a series of vertex figures consisting of a quadruple of
alternating pairs of squares and rhombi (c).



termed Hammersley tilings and, for those special cases exhi-

biting pseudo-decagonal features, designated by their own

symbol Hn.

Details of the construction scheme devised by van der

Corput are given in Appendix A1. It follows from the

construction principle that a van der Corput sequence may be

calculated up to any desired length M = N 2 N. However,

Hammersley tilings Hn do occur only for certain values of M.

Since the bit-reversal process for the point sets under

consideration is rooted in base two, a natural selection scheme

exists based on their size, in which M is given as a power of two

M = 2m. Empirically one finds pseudo-decagonal clusters only

for cases where m is even, yielding the restriction M = 22n. In

order to designate the first instance, for which a pseudo-

decagonal cluster appears, with an index n of unity, the

formula is changed to M = 22nþ2 or M = ð2nþ1Þ
2 in order to

emphasize that the number of vertices is likewise a power of

two and a square number. These numerical restrictions relate

to the existence of a bit-reversal permutation for each

Hammersley tiling Hn, which may be used to encode the

spatial information of its vertex set and prove the generality of

certain of its features (cf. Appendix A3).

Fig. 2(b) shows a larger set of 256 points exhibiting similar

features on a different scale, emphasizing the general nature

of the previous observation. Again, a single decagonal motif

out of a total of 16 is highlighted and, in addition, the nine

interstitial regions separating the decagonal clusters are

emphasized. These ‘gaps’ at the barycentres of four adjacent

decagons denote the location of the rhomb(oid)s exhibiting

the largest and most variable distortions, in terms of the

extremal values their acute and obtuse angles adopt. In a

crystallographic context this local variance of a structural

motif within the surroundings of an ordered framework

resembles an (in)commensurate modulation and raises the

question regarding the possibility to describe the whole

pattern in this way, using an average unit-cell approach.

This effect proceeds for points sets of progressively larger

size, as can be inferred in continuation of the discussed

examples for M = 24 (cf. Table 1), M = 26 (cf. Fig. 2a) and M =

28 (cf. Fig. 2b), especially taking into account the general

construction principle (Appendices A1 and A2) and its

iterative nature (Appendices A3 and A4).

2.2. Tilings composed of regular squares and rhombs

Upon augmenting the patch of Fig. 2(b) into an infinitely

extended tiling of the plane, every vertex has four incident

edges with an overall similar vertex configuration of alter-

nating thin and thick rhomb(oid)s [here the notation ‘rhom-

b(oid)’ reflects the distinction between ideal and less ideal

geometric shapes: a rhomb defined by a single edge length as

opposed to its distorted form, a rhomboid, a parallelogram

with two distinct edge lengths].

Thus, the tiling is topologically equivalent to a regular tiling

of the plane by squares (44 = Q4; Fig. 2c left) and to square

tilings derived from the Fibonacci and Octonacci sequences

although the latter also contain isosceles trapezoidal tiles [see

Lifshitz (2002) for the Fibonacci tiling and Sire et al. (1989) for

the Octonacci one]. Fig. 2(c) depicts a sequence of vertex

figures, each consisting of a quadruple of alternating thin and

thick rhomb(oid)s, which all admit periodic tilings of the

plane, since opposite pairs of concave and convex edge paths

match.

Fig. 2(c) thereby facilitates a visual comparison of the

relative magnitude of the angles encountered in the rhombic

tiling compared with more ideal vertex configurations, starting

from the limiting case of the regular square tiling (a square

denoted by Q with ‘acute’ angle � = 90�) and proceeding with

the special cases in which a pair of squares is alternatingly

combined with congruent pairs of either thick Penrose rhombs

(R, acute angle � = 72�), equilateral triangles (T, 60�),

Ammann–Beenker lozenges (‘, 45�) or thin Penrose rhombs

(r, 36�). The tiling may be derived as well from a semi-regular

Archimedean tiling constituted of equilateral triangles and

squares (snub square tiling; vertex figure 32434 = T2QTQ),

which can be continuously transformed into a tiling of rhombi

(i.e. angular distorted squares) and squares by disregarding all

edges shared by adjacent equilateral triangles.

A case study into the diffraction properties of tilings of this

kind was recently reported by Baake & Grimm (2012) relating

them to what they call ‘planar �-phases’, i.e. a mathematical

abstraction resembling a special type of Frank–Kasper phase,

which represents a well known example from the structural

chemistry of intermetallic compounds sharing certain features

of quasicrystals! Moreover, by means of adjusting the angular

distortion to special values such as � = �=8 or � = �=12 they

were able to calculate diffraction patterns with pseudo-

octagonal and pseudo-dodecagonal intensity distributions (cf.

x3.3 and Figs. 6 and 7 of their work)!

Finally, uniform equitransitive tilings exist where the

rhombi may be dissected into a pair of isosceles rather than

equilateral triangles (see Grünbaum & Shephard, 1987; p. 88,

Fig. 2.5.7b), thereby bearing a closer resemblance to the tiling

analysed in this work.

2.3. Relations to the tilings of Penrose and Ammann–Beenker

A more quantitative relation to the rhombic tilings of

Penrose and Ammann–Beenker is established by an analysis

of the geometric properties of the constituent tiles. For this

purpose the tiling is decomposed according to the distin-

guishable classes of equivalent tiles, resulting in the colouring

shown in Fig. 3.

The finite tiling derived from the set with 64 quasirandom

points consists of a total of six distinct types of tiles, up to

enantiomorphism, whose geometric properties are listed in

Table 1. Of these, three tiles are rhombs, thereby defining a

total of three distinct distances, while the other three are

rhomboids.

Three tiles may be designated as thin rhomb(oid)s,

regarding the criterion that their acute angles are less than 60�.

Since one tile approximates a rhombus consisting of a pair of

equilateral triangles, the remaining two tiles are classified as

thick rhomb(oid)s accordingly.
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An even finer classification, taking into account the actual

values for the acute and obtuse angles, establishes the

connection to quasiperiodic tilings, since both thin and thick

Penrose rhombs as well as Ammann–Beenker type lozenges

and squares may be assigned to their slightly distorted coun-

terparts in the actual tiling. For instance, the thin and thick

rhombs highlighted in grey in the upper left part of Fig. 2 are

only slightly deformed variants of their counterparts in the

rhombic Penrose tiling with acute and obtuse angles of 36.9�

(36�) and 143.1� (144�) for the thin rhomb and 77.5� (72�) and

102.5� (108�) for the thick one, respectively, with their ideal

values given in brackets. The corresponding values for the

Ammann–Beenker tiles are given in Table 1. Overall, the

maximum geometrical deviations from an averaged edge

length of
ffiffiffiffiffi
79
p

=64 as well as the ones with respect to the ideal

angles (given in brackets) are smaller than 8%, and even

smaller than 1% in the case of single tiles. In general, the thin

rhombs yield a considerably better match compared with their

ideal counterparts than the thick ones.

The six distinct types of tiles arrange themselves into a

pattern of 49 tiles in total, with seven tiles in each row and

column. Thin and thick Penrose-like rhomb(oid)s are present

in equal amounts (16� each), whereas twice as many thick

Ammann–Beenker-like rhomboids occur as thin ones (8�

versus 4�). Diamond-like rhombs, forming the centre tiles of a

decagonal cluster, occur four times. A single tile located at the

centre of the tiling remains unaccounted for. However, in

some way this seems to be a logical consequence, since neither

of the other tiles follows their conventional matching rules

valid within a quasiperiodic tiling, thus demanding the

occurrence of gaps in the tiling. Furthermore, the same rhomb

is constituted of two points which take no part in the forma-

tion of the pseudo-decagonal clusters (they are also fixpoints

of the corresponding permutation, cf. Appendix A3, but this

does not hold in general). From a structural chemist’s

perspective such entities appear as ‘glue atoms’. This analogy

is crosswise supported by the previously mentioned analogy of

an (in)commensurate modulation, since the interstitial points

to the pseudo-decagonal clusters are subject to the largest

distortions in Hammersley tilings of larger size (cf. Fig. 2b).

Both the Penrose and the Ammann–Beenker rhombs

intermingle in a peculiar way, such that it becomes difficult to

classify the tiling either as more of the Penrose or more of the

Ammann–Beenker type, although the presence of pseudo-

decagonal clusters favours the connection to the Penrose

tiling.

Of course there are obvious differences. A single decagon is

constituted of three thin and four thick rhomb(oid)s in addi-

tion to one equilateral triangular rhomb in the centre. In

particular, two of the thin rhombs account only for one half of

the area of the decagon. The combination of tiles thus does not

obey the matching rules applicable in the case of a quasi-

periodic Penrose tiling. Of the eight valid vertex configura-

tions to be found within a Penrose tiling, only one, the K-

configuration, describes a quadruple of tiles around a single

vertex. The K-configuration is given by the arrangement of

one thin (r) together with three thick (R) rhombs, according to

the scheme roR3
a, where the subscripts a and o denote the

orientation of the tiles towards the common vertex referring to

either an acute or obtuse angle, respectively. The combination

raR3
o would also be possible regarding the sum of its angles,

1 � 36� + 3 � 108� = 360�, but is not a valid vertex config-

uration in a Penrose tiling. The decagon of the Hammersley

tiling of Fig. 2(a) encloses four vertices, of which two each

form a vertex configuration of roR3
a and raR3

o, respectively. A

second difference is due to the fact that within a rhombic

Penrose tiling two types of decagons may occur, whereas the

tiling under consideration in this work is constituted of a single

type of decagonal cluster. Yet another difference concerns the

frequency of occurrence of thin and thick tiles. Here, the ratio

of the number of thick and thin Penrose-like rhomb(oid)s is

given by R=r = 1 < ’, whereas in a quasiperiodic Penrose

pattern this would be R=r = ’, where ’ = ð1þ
ffiffiffi
5
p
Þ=2 is the

golden mean. A similar relation holds for the quasiperiodic

Ammann–Beenker tiling for which the ratio of squares to

lozenges is given as Q=‘ ¼ 1=
ffiffiffi
2
p

in contrast to a larger ratio

Q=‘ ¼ 2 in our case.

In any way the relation is closer to the binary Penrose tiling,

or binary tiling for short, characterized by matching rules that
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Figure 3
Finite patch of the tiling introduced in Fig. 2 with a colouring
corresponding to the six distinct types of tiles (up to mirror symmetry
according to point group 2m) as well as the subtle deviation from a square
arrangement. A wedge between the origin and its first successing point to
the right is used to indicate the slight offset of repeating motifs. The red,
magenta and green tiles are rhombs, in which case all edges are of equal
length, whereas for the yellow, cyan and blue tiles two distinct edge
lengths occur, as would be the case for rhomboids.

Table 1
Edge lengths jeij and angles �i for the set of six distinct coloured tiles as
illustrated in Fig. 3.

The type of tile is indicated by letters: R/r = Penrose thick/thin rhomb, Q/‘ =
Ammann–Beenker thick/thin rhomb, T = equilateral triangle, c = central thin
rhomb.

Colour je1j=64�1 je2j=64�1 �acute(�) �obtuse (�) Type

Red
ffiffiffiffiffi
80
p

¼
ffiffiffiffiffi
80
p

36.9 (36) 143.1 (144) r
Yellow

ffiffiffiffiffi
80
p

6¼
ffiffiffiffiffi
68
p

77.5 (72) 102.5 (108) R
Cyan

ffiffiffiffiffi
89
p

6¼
ffiffiffiffiffi
68
p

44.0 (45) 136.0 (135) ‘
Blue

ffiffiffiffiffi
89
p

6¼
ffiffiffiffiffi
80
p

84.6 (90) 95.4 (90) Q
Magenta

ffiffiffiffiffi
68
p

¼
ffiffiffiffiffi
68
p

61.9 (60) 118.1 (120) T
Green

ffiffiffiffiffi
89
p

¼
ffiffiffiffiffi
89
p

26.0 154.0 c



differ from those of the original Penrose tiling (Lançon &

Billard, 1988, 1993). Similar Penrose-like tilings were studied

by Widom et al. (1987). In a more general way the

Hammersley tiling strongly resembles a combination of binary

(canonical) substitution tilings of Penrose-type and fivefold

symmetry (Godrèche & Lançon, 1992) and of Ammann–

Beenker type and eightfold symmetry (Harriss & Lamb, 2004;

cf. in particular tiling M3), respectively. Eventually, a further

generalization to binary tilings with n-fold symmetry, where n

is odd, is possible (Lançon & Billard, 1993).

The overall arrangement of decagonal clusters evokes the

impression of a perfect square arrangement, and the pattern

may certainly count as a near-miss in this respect too, but its

construction from a permutation impedes this type of regu-

larity (a wedge indicates the associated horizontal offset in

Fig. 3). However, the patch is symmetric with respect to its

diagonals, thereby enforcing all parallelograms situated along

these diagonals to be rhombs rather than rhomboids. By

analogy the pattern shown in Fig. 3, and certainly any of its

enlarged successors, could be conceived as a finitely extended

periodic approximant to a quasiperiodic structure. Further-

more, a bit-truncated version of the tiling indeed exhibits the

more regular square arrangement of decagonal clusters (cf.

Fig. 4 in Appendix A2).

3. Quasirandomness at large

Aside from the characterization of quasirandom number

sequences, two-dimensional point sets and planar tilings

presented in x2, we draw the reader’s attention to the inti-

mately related concept of discrepancy measures and consider

its possible implications for crystallography.

3.1. Quantifying order in space

In order to quantitatively assess the uniformity of a given

point distribution, the concept of discrepancy as an appro-

priate measure is introduced. The (local) discrepancy

DðP; SÞ ¼
NS

N
�

VS

V

����
���� ð1Þ

of a given set P of N points is the measure specifying the

difference between the actual number density of a subset of

points, NS=N, within a chosen subinterval S, with respect to

the expected one, according to the relative spatial extension

(area, volume etc. depending on spatial dimension) of the

subinterval, VS=V, and perfect uniformity provided. V is

commonly represented by the s-dimensional unit interval

½0; 1Þs, thus V = 1. A global discrepancy may then be defined to

be the least upper bound, i.e. the supremum, with respect to all

possible discrete subintervals and their local discrepancies

under consideration.

Some alternative discrepancy measures exist, such as the so-

called star discrepancy D�, which may have certain advantages

in practical applications, in particular regarding the ease of

their calculation. Matoušek (2010) gives a comprehensive

survey of these and other issues of geometric discrepancy

theory as do Kuipers & Niederreiter (1974; ch. 2) in the

context of uniform distribution of sequences; see also the

concise discussion by Entacher (2005).

In general, discrepancy theory is concerned with the

deviations from uniformity in a way similar to Ramsey theory

which studies the conditions under which some predefined

order must appear. Discrepancy measures complement other

established methods of detecting and quantitatively judging

order, such as nearest-neighbour statistics, radial distribution

functions or Fourier methods (Illian et al., 2008).

Irrespective of the chosen definition, any discrepancy

measure is the lower the more uniform a distribution of points

becomes (and zero in the limit of perfect uniformity). Notably,

a point lattice, intuitively appearing most uniform, does not

necessarily possess a low discrepancy, owing to its arrange-

ment of points being too regular. A number of methods exist

for the construction of low-discrepancy sequences, among

them, in particular, the one devised by van der Corput (cf.

Appendix A1).

3.2. Quasirandomness in nature?

Crystal structures, commonly conceived to be prime

examples for the ordered arrangements of atoms, governed by

symmetry, may rather be representatives of quasi- and pseudo-

random principles.

The occurrence of approximate decagonal clusters

extending into an almost periodic variant of the Penrose tiling

made of thin and thick rhombs in a rather simple number-

theoretic context of quasirandom low-discrepancy sequences

may be the result of a mere coincidence. However, although

the generation of the quasirandom van der Corput set cannot

be in any way compared with the formation of an actual

quasicrystal, the underlying mechanisms may be nevertheless

quite similar. Most often quasicrystals are rapidly solidified

from their comparatively disordered molten state, in which the

atoms may be distributed in a rather random fashion. At the

same time crystallization occurs under severe physical

constraints, e.g. regarding the mutual self-avoidance of atoms

due to classical and quantum mechanical repulsion principles,

which set a lower bound for interatomic distances and thereby

impose a kind of uniform distribution similar to a quasi-

random point set. The entropy-driven randomness in the

aggregation of atoms is accompanied by enthalpy-driven

correlations in their spatial arrangement, which in turn lends

the whole process a qualitative quasirandom characterization.

These arguments should be even more persuasive considering

the case of amorphous solids, where the arrangement of atoms

is regarded as ‘random’; certainly not truly random as in the

sense of Fig. 1(d), but rather quasirandom instead.

Thus, one may think about quasirandomness as a governing

factor in the formation of crystal structures, actual realisations

of abstract, uniformly discrete and relatively dense point sets,

similar in scope but distinct in its consequences to symmetry as

a fundamental ordering principle.

In particular, it seems possible that the discrepancy of a

crystal structure (cf. x3.1), i.e. the discrepancy of the three-
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dimensional point set derived from its atomic coordinates, is

not only a measure of the uniformity in the distribution of

atoms but itself a variable under optimization during the

formation of the crystal structure. It may also be that the

tendency of atoms to arrange themselves into structures of

highest symmetry is challenged by a tendency to be distributed

in a most uniform way, i.e. to minimize geometric discrepancy

or, in other terms, to maximize self-avoidance, instead. Crys-

tallization then may be conceived as a complex optimization

process regarding (de)localized chemical bonding and mutual

(discrepancy-driven) self-avoidance, much as in Schopen-

hauer’s parable Die Stachelschweine (The Porcupines), loosely

restrained by more global factors like packing density and

symmetry.

An example of this may be given by the structure of

�-manganese (Lidin & Fredrickson, 2012), which proves to be

a near-miss to a three-dimensional metrically cubic permuta-

tion structure, however of low triclinic symmetry (Hornfeck,

2012). Owing to slight distortions from the ideal permutation

structure, with the more uniform spatial distribution of atoms,

the actual crystal structure attains cubic symmetry instead.

Eventually this may also give an explanation for why

quasicrystalline states of matter could be in some cases

superior to crystalline ones and why quasicrystalline states

often exhibit a residual disorder regarding a potential state of

higher symmetry. Arguments based on discrepancy theory

should facilitate an analysis in quantitative terms.

In any way, the rather subtle semantic difference between

pseudo- and quasirandomness may challenge our fundamental

understanding of matter and emphasize the continuous

interplay between all kinds of possible states of short- and

long-range order.

3.3. Combinatorial crystallography

The aforementioned observations call for some qualitative

assessments, focusing on some ideas of how to take a distinct

look at crystal structures.

We would like to emphasize the arithmetical properties of

crystal structures, i.e. their quantitative details beyond the

mere listing of atomic coordinates or the calculation of

interatomic distances and angles and in contrast to the

qualitative classification regarding symmetry. We deem it

useful to think of crystal structures in a context of what one

may call crystallographic information theory, i.e. as spatial

codes, as actual expressions of chemical interactions, repre-

senting a case in which the messenger is identical to the

message [a similar, even more comprehensive, perspective is

developed in a recent essay of Cartwright & Mackay (2012)].

One may even think about the algorithmic generation of

crystal structures similar to the Lindenmayer systems of

theoretical biology (Lindenmayer, 1968). In the latter case the

alphabet would consist of a set of elements, including vacan-

cies as null-elements, a set of substitution rules and an initial

string from which the iterative generation of the structure

proceeds, quite similar to concepts used in the description of

homologous series of crystal structures or quasicrystals.

In this context we would like to draw attention to the

arithmetic approaches of Nardone (2006) and Indelicato

(2013, and references therein) in their studies of multilattices

(where a multilattice is defined as a finite union of translates of

a given simple lattice). Their approach extends the method on

which the classification of simple lattices into Bravais types is

based in order to facilitate a finer classification scheme for

crystal structures than the classical one using space-group

types alone.

Arithmetical methods based on the generation of random

numbers seem to be another approach by which structures,

i.e. point patterns, can be encoded in a most general way.

Symmetry emerges quite naturally from the cycle structure of

the associated permutations, for the pseudorandom numbers

generated by the multiplicative congruential method intro-

duced by Lehmer (1949) as well as for the quasirandom ones

generated by the bit-reversal method of van der Corput

(1935).

4. Conclusion

Quasirandom point sets constructed by the bit-reversal

method of van der Corput exhibit certain features of quasi-

crystals, notably pseudo-decagonal short-range order. Their

associated planar tilings, termed Hammersley tilings Hn, are

almost completely constituted of near-miss rhombic tiles

closely approximating their ideal counterparts from the

rhombic tilings of Penrose and Ammann–Beenker. Further-

more, these tilings resemble the semi-regular ones composed

of squares and rhombs of Baake & Grimm (2012), termed

planar �-phases and showing pseudo-symmetrical intensity

distributions in their diffraction patterns with apparent

symmetries characteristic of axial quasicrystals. For each of the

considered quasirandom tilings there is a corresponding

description by means of bit-reversal permutations, in many

kinds similar to permutations arising from multiplicative

congruential generators, which are known to generate

pseudorandom numbers on their part.

In conjunction with the discussion of quasirandom

sequences, point sets and tilings, the concept of discrepancy

was evoked, discussing its ability to quantify distinct states of

order in between the limiting states of purely crystalline and

purely amorphous condensed matter. For instance, it seems

tempting to explore discrepancy measures applied to crystal

and quasicrystal structures, but in particular to the structures

of disordered solids including what is known about structures

representing the amorphous state.

Random point sets have been studied from the point of

view of their diffraction (Baake & Kösters, 2011; Baake &

Grimm, 2012), but it seems equally fruitful to analyse their

real-space properties. In either view a definition of long-range

order is still missing, regardless of its definition in real or dual

space. From the analysis presented in this note one may

conclude that the study of pseudo- and quasirandom point sets

and their related permutations may add something to our

understanding of the arrangement of atoms in condensed

matter. To us it appears that a vast amount of knowledge
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already collected in the fields of discrete mathematics and

computer science merely awaits its translation into and

application within a crystallographic context.

APPENDIX A
van der Corput sequences and Hammersley sets

A1. van der Corput’s construction

A sequence of given length M is constructed from the set of

M successive non-negative integers Ni 2 f0; 1; . . . ;M � 1g =

Z=MZ by first expanding them into their respective binary

representation

Ni ¼
Pm�1

n¼0

bnðNiÞ 2
n ¼ bm�1 . . . b1b0 ð2Þ

followed by a bitwise reversal

N �i ¼
Xm�1

n¼0

bnðNiÞ

2nþ1
¼ 0:b0b1 . . . bm�1 ð3Þ

and their final back-conversion into the corresponding

decimal numbers, thereby yielding the base 2 van der Corput

sequence.

A two-dimensional point set is then constructed by a pair-

wise combination of the initial and final numbers of the bit-

reversal process, pi = ðNi=M;N �i Þ, the former ones taken as

fractions of the common denominator M,

Ni=M!
bm�1 2m�1 þ . . .þ b0 20

2m
¼

bm�1

21
þ . . .þ

b0

2m
;

N �i !
b0

21
þ . . .þ

bm�1

2m
: ð4Þ

Here, the bit-reversal process becomes obvious.

A decagonal pattern first appears for a point set of size M =

24 = 16 for which the coordinate values are listed in Table 2,

illustrating the bit-reversal process in detail.

The method of van der Corput is naturally generalized to

distinct bases other than 2 as well as to arbitrary dimension

s > 1 (Halton sets). In addition, the distribution properties of

the sequence may be altered by a bit-truncation process

accompanying the bit reversal (Hammersley sets). The latter

process is interesting, since it introduces a kind of finite

periodicity ultimately leading to a lattice-ordered state of

square symmetry.

A2. Bit-truncated Hammersley sets

The pattern of 64 points depicted in Fig. 1(c) is an example

of a so-called ðt;m; sÞ-net, in particular representing the

ð0; 6; 2Þ case, where 2m defines the size M of the set (i.e. the

number of points; here, m = 6, M = 64), s denotes the

dimension (here, two-dimensional) and the integer t would

define an additional intermediate truncation of t bits, taking

place after the bit-reversal process but prior to the plotting of

coordinate values. The ðt;m; sÞ-nets of ð0;m; 2Þ-type are

known as Hammersley sets, thus generalizing the principle

underneath the van der Corput sequence to higher dimen-

sions. The prime example of a low-discrepancy sequence, the

van der Corput sequence, may then be conceived as a special

case, namely as the ðt; sÞ-sequence with t = 0 and s = 1. In some

sense the Hammersley point set thus transcends the one-

dimensional van der Corput sequence into a two-dimensional

pattern.

Whereas the ð0; 6; 2Þ-net of Fig. 1(c) or Fig. 4(a) is only a

near miss to a pattern with a square arrangement of clusters,

the bit-truncated ð1; 6; 2Þ-net exhibits perfect repetition, as

depicted in Fig. 4(b). Bit truncation thus destroys the

permutation structure but at the same time enforces a (finite)

periodicity compared with the original set. Higher degrees of

bit truncation with t > 1 yield subdivisions of increasingly

smaller repetition period, with a minimum at t = m=2;

henceforth square lattice patterns prevail, thereby illustrating

the information loss accompanying each bit-truncation step.

Bit truncation to the highest degree, i.e. t = m, is identical to

the projection of the whole set of numbers to a single point

at ð0; 0Þ.

The effect of the bit-truncation process may be exemplified

by comparison of the circled regions in the upper row of Fig. 4

which contain a single point each. Whereas for the t = 0

pattern both points are located at distinct positions with

respect to a common horizontal axis, their position coincides

for the t = 1 pattern. If one superimposes a grid, the grid lines

will be separated with a spatial resolution of 1=2m�t and each

grid line will contain 2t points. For the pattern with t = 0 the

spacing of the grid is minimal, here 1/64, thus maximizing its

resolution, but each grid line contains only one point.

Thus, for low values of t, bit truncation ‘acts’ as a small

distortion yielding finite analogues to an infinitely extended

pattern with translation periodicity, whereas high values of t

eventually enforce the appearance of a primitive square

lattice. Thereby, the bit-truncation process creates a quasi-

continuous transformation between distinctly ordered states,

with the most uniform (t = 0) and the most regular (t = m)

distribution of points at its limits.

A detailed exposition of the aforementioned is given by

Entacher (2005), illustrating the use of the Mathematica soft-

ware in the construction and statistical analysis of quasi- and

pseudorandom point sets (Hammersley and Halton point sets

as well as ones generated by the action of linear and non-

linear congruential generators, the former including MCGs).
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Table 2
Point coordinates pi ¼ ðNi=M;N �i Þ of the van der Corput set of size
M ¼ 16 and their generation via bit reversal.

The subscripts 2 and 10 denote the base and ðN �i Þ10 is given in multiples of
M�1 in order to emphasize the permutation character of the process [cf.
equation (5)].

ðNiÞ10 ðNiÞ2 ðN �i Þ2 ðN �i Þ10 ðNiÞ10 ðNiÞ2 ðN �i Þ2 ðN �i Þ10

0 0 0.0 0 8 1000 0.0001 1
1 1 0.1 8 9 1001 0.1001 9
2 10 0.01 4 10 1010 0.0101 5
3 11 0.11 12 11 1011 0.1101 13
4 100 0.001 2 12 1100 0.0011 3
5 101 0.101 10 13 1101 0.1011 11
6 110 0.011 6 14 1110 0.0111 7
7 111 0.111 14 15 1111 0.1111 15



In addition, ðt; sÞ-sequences and ðt;m; sÞ-nets are treated in

various contexts in the monographs of Niederreiter (1992) and

Hellekalek & Larcher (1998).

A3. Bit-reversal permutations

The coordinates listed in Table 2 illustrate the bit-reversal

process yielding a base-two van der Corput sequence of size

M = 24 = 16. Here, the emphasis is laid on the associated bit-

reversal permutations whose existence arises from the fact

that the size of the sequence is given by an (even) power of

two. This guarantees that the set of M integers N �i M 2 Z=MZ

is in a one-to-one correspondence with the set Ni 2 Z=MZ,

defining the permutation (in cycle notation)

ð0Þð1 8Þð2 4Þð3 12Þð5 10Þð6Þð7 14Þð9Þð11 13Þð15Þ; ð5Þ

solely consisting of cycles of length ‘ = 1 (fixpoints) and ‘ = 2

(transpositions). The same argument holds for all point sets of

size M = 22nþ2 corresponding to a Hammersley tiling Hn.

Accordingly, the set for M = 26 = 64 may be represented as

ð0Þð1 32Þð2 16Þð3 48Þð4 8Þð5 40Þð6 24Þð7 56Þð9 36Þ

ð10 20Þð11 52Þð12Þð13 44Þð14 28Þð15 60Þð17 34Þð18Þ

ð19 50Þð21 42Þð22 26Þð23 58Þð25 38Þð27 54Þð29 46Þ

ð30Þð31 62Þð33Þð35 49Þð37 41Þð39 57Þð43 53Þð45Þ

ð47 61Þð51Þð55 59Þð63Þ:

Owing to a spatial repetition this may be noted much shorter,

ð0Þð2 16Þð4 8Þð6 24Þð10 20Þð12Þð14 28Þð18Þð22 26Þð30Þ

þ ð1 32Þ;þð32 1Þ;þð33Þ:

Dividing all entries by two (disregarding repetition) yields the

permutation according to the van der Corput sequence of

length M = 16 [cf. equation (5)]. In a similar way the van der

Corput sequence of length M = 256 is given by the permuta-

tion described in equation (5) via a multiplication by four:

ð0Þð4 32Þð8 16Þð12 48Þð20 40Þð24Þð28 56Þð36Þð44 52Þð60Þ

in addition to a set of 15 translations, e.g. along þð1 128Þ,

emphasizing the hierarchical construction principle of these

permutations as well as their associated point sets and tilings.

In general, any permutation corresponding to a

Hammersley tiling Hn of size M in base two consists solely

of m1 fixpoints and m2 transpositions, which are trivially

related according to M = 2m2 þm1 = 22nþ2. The number of

fixpoints, including the origin ð0Þ, is given as m1 =
ffiffiffiffiffi
M
p

, and

consequently m2 = ðm2
1 �m1Þ=2.

A4. Generalized Hammersley tilings

At the lowest hierarchical level the Hammersley tiling H1

comprises a single pseudo-decagonal building block

containing nine tiles of three distinct types [eight tiles

surrounding a central one, according to a one-line formula

TðRrÞ4, where each tile is represented by its one-letter symbol]

encompassing 16 vertices,

r R r

R T R

r R r

!

r R r Q r R r

R T R ‘ R T R

r R r Q r R r

Q ‘ Q c Q ‘ Q

r R r Q r R r

R T R ‘ R T R

r R r Q r R r

H1 H2

The next level of spatial extension, represented by the tiling

H2, repeats the structural motif of the former one, however, by

means of adding new distinct types of tiles at the barycentre c

and in between the pseudo-decagonal clusters (Q; ‘). Thus,
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Figure 4
Hammersley point sets ðt; 6; 2Þ for distinct bit truncations t with dashed
lines denoting unit-cell boundaries. For t = 1 one has four copies of the
Hammersley point set ð0; 4; 2Þ, i.e. colloquially ð1; 6; 2Þ = 4� ð0; 4; 2Þ.
Note the onset of a series of square lattices, beginning from t = 3
(generally t = m=2) onwards. At t = 6 everything collapses into a single
point at ð0; 0Þ, corresponding to a full truncation of all bits, thereby
completing the circle of decreasing and increasing number of unit cells,
1, 4, 16, 32, 16, 4, 1, within the fixed frame defined by the t = 0
configuration.



the one-line notation for H2 may be given as cðQ2‘Þ4fTðRrÞ4g4.

A comparison with the H1 tiling shows the iterative and

creative nature while proceeding from one level of hierarchy

to the next. For every step Hn 7! Hnþ1 the finite patch Hn is

repeated in a fourfold arrangement surrounding a newly

created barycentre separated by four newly created single

bands of tiles. This creation of new kinds of tiles renders a

general formula including the frequency of occurrence of

special rhomb(oid)s less useful than simply counting the

number of vertices, tiles, clusters and barycentres as listed in

Table 3.

A5. Iterated maps and the van der Corput sequence

Multiplicative congruential generators (MCGs) were shown

to be connected to iterated maps [see Hornfeck (2012) for

details and references]. The same is true for the bit-reversal

process related to the van der Corput sequence, which is

generated as the orbit of the origin under the dyadic von

Neumann–Kakutani transformation (Grabner et al., 2012).

Twelve initial steps of the orbit are depicted by arrows in Fig. 5.

Both the start and the end point of the orbit, the latter located

at the diagonal y = x, are marked by open circles. As is the case

for MCGs, the iterated map based on the von Neumann–

Kakutani transformation is defined by a piecewise linear

function constructed by a splitting and stacking procedure.

APPENDIX B
Phase-space sampling by pseudo- and quasirandom
numbers in structure solution

A great part of the successful application of direct methods for

the solution of crystal structures may be traced back to the

efficient generation of a finite starting set of random phases.

The practical task consists of finding an efficient sampling of

the highly multi-dimensional phase space, in particular if one

is considering the general non-centrosymmetric case.

For this purpose different strategies have been devised,

among them the so-called magic integer method, introduced by

White & Woolfson (1975). The main idea of their approach

can be traced back to ideas first discussed by Woolfson (1954)

and later justified by Good (1954, 1959) regarding the deter-

mination of centrosymmetric structures by means of sign

permutations. The method was furthermore extended and

given a theoretical foundation in a series of articles regarding

The Application of Phase Relationships to Complex Structures,

especially by Declercq et al. (1975) and Main (1977, 1978).

The method is based on the approximative representation

of a given set of phases 0 � �i < 1 by a set of n equations,

�i � mi x ðmod 1Þ; i ¼ 1; . . . ; n; ð6Þ

where 0 � x< 1 is a fixed parameter to be determined and mi

constitute the set of n magic integers. By this means it is

possible to represent a large number of phases in terms of a

comparatively small number of parameters.

Furthermore, the representation of single phase sets by

means of magic integers can be extended to encompass rela-

tionships between phases. Given, for instance, a triplet rela-

tionship

�i þ �j þ �k þ � � 0 ðmod 1Þ ð7Þ

with phases �i represented by the same basic set of magic

integers mi in several variables xi . For instance, in the case of

three variables x; y; z replacing the phases by their magic

integer representation and combining like terms, i.e. making a

summation over distinct magic integer coefficients for the

same variable, leads to a relationship

H xþ K yþ L zþ b � 0 ðmod 1Þ; ð8Þ

which may be used, in the course of a Fourier synthesis, to

determine a refined phase set which after additional steps

eventually leads to the solution of the structure. The main

advantage lies in the efficient and simultaneous representation

of a primary set of single phases and phase relationships,

which are then used to obtain a secondary set of phases and

thereby extending them until a solution is found. Although the

approach is of an approximative nature, the large number of

single phases and phase relationships guarantee the robust-
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Figure 5
Iterated map based on the dyadic von Neumann–Kakutani transforma-
tion.

Table 3
First representatives and general formulas of the Hammersley tilings Hn

counting the number of vertices, tiles, pseudo-decagonal clusters and
intercluster barycentres, as well as cluster packing fraction %.

The value of 9/16 for the cluster packing fraction describes the limit for an
infinitely extended tiling H1.

Tiling Vertices Tiles Cluster Barycentres %

H1 16 9 1 0 1
H2 64 49 4 1 0.7347
H3 256 225 16 9 0.6400
H4 1024 961 64 49 0.5994
H5 4096 3969 256 225 0.5805
H6 16384 16129 1024 961 0.5714
H7 65536 65025 4096 3969 0.5669
..
. ..

. ..
. ..

. ..
. ..

.

Hn ð2nþ1Þ
2

ð2nþ1 � 1Þ2 ð2n�1Þ
2

ð2n�1 � 1Þ2 0:5625
= 22nþ2 = 22n�2 = 9=16



ness of the algorithm with respect to inevitable errors in the

accuracy of determining the correct phases.

Magic integers thus may be used both (and in fact simul-

taneously) for phase-space exploration and phase extension

given a set of already known phases as well as for the

generation of a starting set of phases and their subsequent

permutation given a set of yet unknown phases (Declercq et

al., 1975).

The magic integer method allows for a much more efficient

phase-space sampling than the earlier concept of quadrant

permutation. An explanation for this is given by analogy: the

magic integer method represents the case of a point set

generated by the multiplicative congruential method, the

generated numbers thus are pseudorandom and therefore

superior to the case of quadrant permutation, which repre-

sents the lattice-ordered case [cf. Fig. 6 of Main (1978)]. To the

best of our knowledge, no one has yet explored possible

applications of quasirandom numbers in the application of

direct methods, although they should, in principle, allow for an

even more uniform sampling of phase space than is the case

for pseudorandom numbers.

The set of congruence relations defined by equation (6)

describes the parametric equation of a straight line (subject to

periodic boundary conditions) within an n-dimensional phase

space in a similar way as was independently described by

Hornfeck (2012) for the real-space description of crystal

structures by means of the multiplicative congruential method.

This connection between real- and dual-space concepts may

seem surprising; however, the underlying sampling tasks are of

an analogous nature. As yet it seems unclear whether both

approaches can be combined in such a way that would

improve crystal structure solution by means of direct methods.

Many thanks to Philipp Kuhn for comments on the manu-

script, to Sven Binder for his subversive mindset, and to

Markus Blümner for inspiration.
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